1003 Nitration of benzaldehyde to 3-nitrobenzaldehyde

$$H_{O}$$
 H_{NO_3/H_2SO_4}
 H_{NO_2}
+ side products

 C_7H_6O
 H_2SO_4
 H_2SO_4

Classification

Reaction types and substance classes

electrophilic substitution of aromatics, nitration of aromatics aromatics, nitroaromatics, aldehyde

Work methods

stirring with magnetic stir bar, extracting, shaking out, recrystallizing, filtering, use of an ice cooling bath

Instruction (batch scale 100 mmol)

Equipment

500 mL three-neck flask, 1 L beaker, internal thermometer, addition funnel with pressure balance, magnetic stirrer, magnetic stir bar, rotary evaporator, separating funnel, suction flask, Buechner funnel, ice bath

Substances

benzaldehyde (freshly distilled) (bp 179 °C) 10.6 g (10.1 mL, 100 mmol) H_2SO_4 (conc.) 90 mL (1.7 mol) HNO_3 (fuming) 45 mL (0.95 mol) tert-butyl methyl ether (bp 55 °C) 125 mL aqueous NaHCO $_3$ solution (5%) 125 mL sodium sulfate for drying about 5 g toluene (bp 111 °C) petroleum ether (bp 60-80 °C)

Reaction

89 mL (1.7 mol) concentrated H_2SO_4 are filled in a 500 mL three-neck flask equipped with an internal thermometer and an addition funnel with pressure balance. Whilst cooling with an ice bath 45 mL (0.95 mol) fuming HNO₃ are added carefully under stirring, the temperature

must not exceed $10\,^{\circ}$ C. To this nitrating acid, $10.6\,\mathrm{g}$ ($10.2\,\mathrm{mL}$, $100\,\mathrm{mmol}$) benzaldehyde are added under further cooling so that the temperature can be constantly kept at $15\,^{\circ}$ C (about 1 hour). The ice bath is removed and the reaction mixture is stored over night at room temperature.

Work up

The reaction mixture is poured in a 1 L beaker on 500 g crunched ice, the yellow precipitation is sucked off at 16 hPa over a Buechner funnel and washed with 200 mL of cold water. Crude yield (humid): 14.4 g

The humid crude product is dissolved in 125 mL *tert*-butyl methyl ether and then shaken out with 125 mL of a 5% NaHCO₃ solution. The organic phase is dried over sodium sulfate, filtered and the solvent evaporated at a rotary evaporator. The residue is recrystallized from toluene / petroleumether (60-80 °C) by dissolving it in toluene whilst heating and then adding the double amount of petroleum ether in portions under ice cooling. The crystallized light yellow **3-nitrobenzaldehyde** is sucked off over a Buechner funnel. The product is dried over silica gel in an evacuated desiccator.

Yield: 8.0 g (53 mmol, 53%); mp 56 °C

Comments

In the experiments Number 2003 and 5004 the product is used as educt.

Waste management

Recycling

The evaporated *tert*-butyl methyl ether is collected and redistilled.

Waste Disposal

Waste	Disposal
aqueous filtrate from crude product	solvent water mixtures, halogen free
aqueous phase from shaking out	solvent water mixtures, halogen free
petroleumether toluene mixture (mother liquor)	organic solvents, halogen free
sodium sulfate	solid waste, free from mercury

Time

3-4 hours, without recrystallization

Break

Before shaking out

Degree of difficulty

Medium

Instruction (batch scale 20 mmol)

Equipment

250 mL three-neck flask, 500 mL beaker, internal thermometer, addition funnel with pressure balance, magnetic stirrer, magnetic stir bar, rotary evaporator, separating funnel, suction flask, Buechner funnel, ice bath

Substances

benzaldehyde (freshly distilled) (bp 179 °C) 2.12 g, (2.02 mL, 20.0 mmol)

H₂SO₄ (conc.) 19 mL (350 mmol) HNO₃ (fuming) 8.7 mL (200 mmol)

tert-butyl methyl ether (bp 55 °C) 25 mL aqueous NaHCO₃ solution (5%) 25 mL sodium sulfate for drying about 1 g

toluene (bp 111 °C)

petroleum ether (bp 60-80 °C)

Reaction

19 mL (350 mmol) of conc. H_2SO_4 are filled in a 250 mL three-neck flask equipped with an internal thermometer and addition funnel with pressure balance. Whilst cooling with an ice bath 8.7 mL (200 mmol) fuming HNO_3 are added carefully under stirring, the temperature must not exceed 10 °C. To this nitrating acid 2.12 g (2.02 mL, 20.0 mmol) benzaldehyde are added under further cooling so that the temperature can be constantly kept at 15 °C. The ice bath is removed and the reaction mixture is stored over night at room temperature.

Work up

The reaction mixture is poured in a 500 mL beaker on 150 g of crunched ice. The yellow precipitation is sucked off over a Buechner funnel and washed with 50 mL cold water. Crude yield (humid): 2.87 g

The humid crude product is dissolved in 25 mL *tert*-butyl methyl ether and shaken out with 25 mL of a 5% NaHCO₃ solution. The organic phase is dried over sodium sulfate, filtered and the solvent evaporated at a rotary evaporator. The residue is recrystallized from toluene/petroleum ether (60-80 °C) by dissolving it under heating in a few mL of toluene and then adding the double amount of petroleum ether in portions under ice cooling. The crystallized **3-nitrobenzaldehyde** is sucked off over a Buechner funnel and dried in the evacuated desiccator.

Yield: 1.57 g (10.4 mmol, 52%); mp 56 °C

Comments

In experiments Number 2003 and 5004 the product is used as educt.

Waste management

Recycling

The evaporated *tert*-butyl methyl ether is collected and redistilled.

Waste disposal

Waste	Disposal
aqueous filtrate from crude product	solvent water mixtures, halogen free
aqeuous phase from shaking out	solvent water mixtures, halogen free
petroleumether toluene mixture (mother liquor)	organic solvents, halogen free
sodium sulfate	solid waste, free from mercury

Time

2-3 hours, without recrystallisation

Break

Before shaking out

Degree of difficulty

Medium

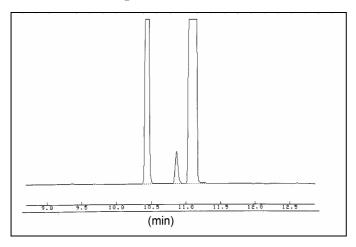
Analytics

GC

GC-Conditions:

column: 5CB Low Blend/MS, length 30 m, internal diameter 0.32 mm, Film 0.25m

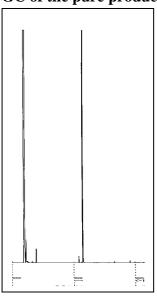
inlet: injector temperature 210 °C, splitinjection


carrier gas: H₂, pre-column pressure 50 kPa

oven: $60 \,^{\circ}\text{C} \, (2 \, \text{min})$, heating rate $10 \,^{\circ}\text{C/min}$, isotherme $240 \,^{\circ}\text{C} \, (50 \, \text{min})$

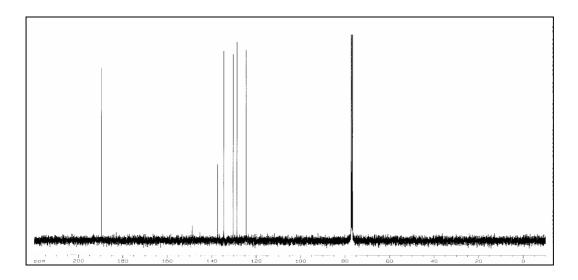
detector: FID, 310 °C, integrator: Shimadzu

Percent concentration was calculated from peak areas.

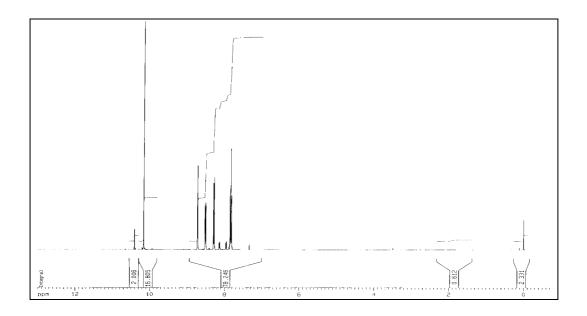

GC of the crude product

Retention time (min)	Substance	Peak area %
10.5	2-nitrobenzaldehyde	8.80
10.9	4-nitrobenzaldehyde	0.92
11.1	3-nitrobenzaldehyde	90.3

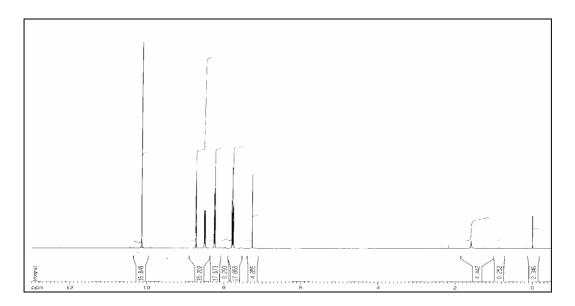
No educt detected


GC of the pure product

Retention tin	ne (min)	Substance	Peak area %
11.4		3-nitrobenzaldehyde	> 99

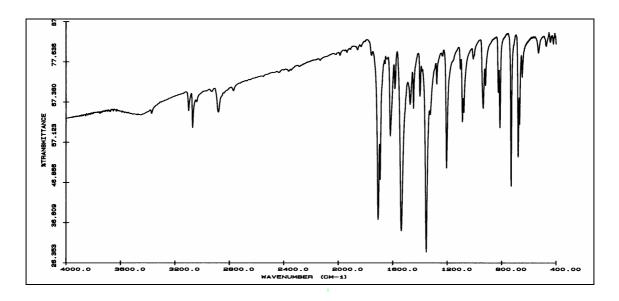

The peaks below 10 min are from solvents.

 ^{13}C NMR spectrum of the pure product $\,(100~MHz,\,CDCl_3)$



δ (ppm)	Assignment
124.49	C-2
128.57	C-4
130.36	C-5
134.58	C-6
137.39	C-1
148.79	C-3
189.67	C-7
76.5-77.5	solvent

1H NMR spectrum of the crude product (400 MHz, CDCl₃)

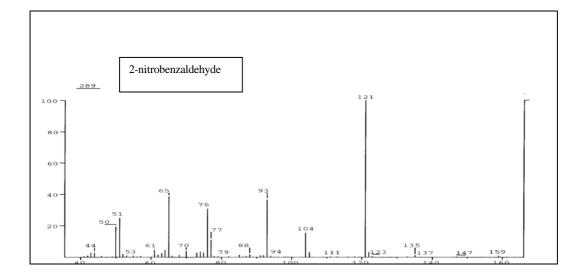


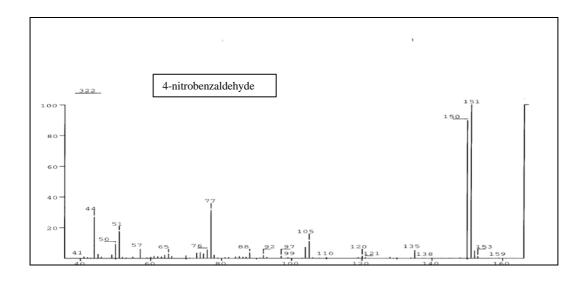
1H NMR Spectrum of the pure product (400 MHz, CDCl₃)

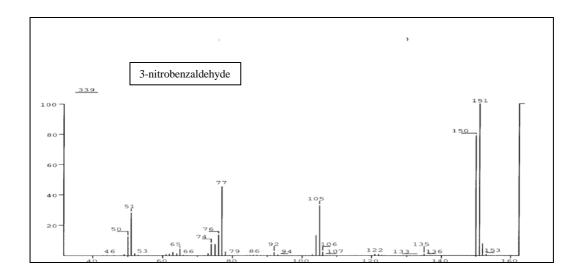
δ (ppm)	Multiplicity	Number of H	Assignment
7.76 - 7.80	t	1	5-H
8.23 - 8.25	m	1	6-H
8.48 - 8.51	m	1	4-H
8.72 - 8.73	m	1	2-H
10.13	S	1	7-H
7.26			solvent

IR spectrum of the pure product (KBr)


(cm ⁻¹)	Assignment
3100	C-H-valence, arene
2840	OC-H-valence, aldehyde
1690	C=O-valence, aldehyde
1580	C=C-valence, arene
1540, 1350	N=O-valence, asymm. and symm.


GC/MS of the crude product


GC-conditions:


column: ZB-1, length 30 m inlet: splitinjection 1:20 oven: 70-300 °C, 6 °C/min

The GC/MS measurings confirm the formation of 3 Isomeres:

