1005 Bromination of 1,2-dimethoxybenzene to 4,5-dibromo-1,2-dimethoxybenzene

$$CH_3$$
 CH_3 CH_3

Classification

Reaction types and substance classes

electrophilic substitution of aromatics, bromination of aromatics aromatics, bromoaromatics, aryl ether

Work methods

adding dropwise with an addition funnel, stirring with magnetic stir bar, recrystallizing, filtering

Instruction (batch scale 30 mmol)

Equipment

250 mL Erlenmeyer flask, thermometer, addition funnel, heatable magnetic stirrer, magnetic stir bar, Buechner funnel, suction flask

Substances

1,2-dimethoxybenzene (mp 15 °C, bp 205 °C)	4.15 g (30.0 mmol)
potassium bromate	3.34 g (20.0 mmol)
hydrobromic acid (48%)	12 mL (105 mmol)
aqueous sodium disulfite solution (0.2 M)	20 mL
acetic acid (conc.) (bp 118 °C)	40 mL
ethanol (bp 78 °C)	10 mL

Reaction

4.15 g (30.0 mmol) 1,2-dimethoxybenzene (veratrol) are filled in a 250 mL Erlenmeyer flask with thermometer and magnetic stir bar and dissolved in 40 mL conc. acetic acid. 3.34 g (20 mmol) potassium bromate is added which initially is not completely dissolved. Then 12 mL (105 mmol) hydrobromic acid (48%) are added dropwise under stirring, at room

1

temperature. Potassium bromate dissolves completely, when the temperature of the reaction mixture starts to increase to about $45\,^{\circ}$ C. The mixture is stirred for further 30 minutes at room temperature.

Work up

The solution is added to 100 mL ice water and stirred for further 15 minutes. The precipitation is sucked off and washed first with 20 mL of a 0.2 M sodium disulfite solution and then with 20 mL water. Crude yield: 9.2 g

The crude product is recrystallized from 10 mL ethanol and dried in the evacuated desiccator over silica gel.

Yield: 5.40 g (18.2 mmol, 61%); mp 87 °C

Waste management

Waste disposal

Waste	Disposal	
aqueous filtrate	solvent water mixtures, containing halogen	
mother liquor from recrystallization	organic solvents, containing halogen	

Time

2.5 hours

Break

Before recrystallization

Degree of difficulty

Easy

Instruction (batch scale 100 mmol)

Equipment

250 mL Erlenmeyer flask, thermometer, addition funnel, heatable magnetic stirrer, magnetic stir bar, Buechner funnel, suction flask, rotary evaporator

Substances

1,2-dimethoxybenzene (mp 15 °C, bp. 205 °C)	13.8 g (100 mmol)
potassium bromate	11.2 g (67.1 mmol)
hydrobromic acid (48%)	40 mL (350 mmol)
aqueous sodium disulfite solution (0.2 M)	60 mL
conc. acetic acid (bp 118 °C)	133 mL
ethanol (bp 78 °C)	25 mL

Reaction

13.8 g (100 mmol) 1,2-dimethoxybenzene(veratrol) are filled in a 250 mL Erlenmeyer flask with thermometer and magnetic stir bar and dissolved in 133 mL conc. acetic acid. 11.2 g

(67.1 mmol) potassium bromate are added which initially is not completely dissolved. Then 40 mL (350 mmol) hydrobromic acid (48%) is added dropwise under stirring at room temperature. Potassium bromate dissolves completely when the temperature of the reaction mixture starts to increase. The solution ist stirred for further 30 minutes at room temperature.

Work up

The reaction mixture is addedd to 200 mL ice water and stirred for further 15 minutes. The precipitation is sucked off and washed first with 60 mL of a 0.2 M sodium disulfite solution and then with 100 mL water. Crude yield: 32.7 g

The crude product is recrystallized from 20-25 mL ethanol and dried over silica gel in the evacuated desiccator.

Yield: 23.0 g (77.7 mmol, 78%); mp 87 °C; GC-purity 100%

Comments

By evaporating of the solvent from the mother liquor at the rotary evaporator and recrystallization of the residue from ethanol, a small amount of a second less pure crystall fraction can be isolated. The remaining mother liquor contains mainly the side product 4-bromo-1,2-dimethoxybenzene (see analytics).

Waste management

Recycling

The ethanol is evaporated from the mother liquor, collected and redistilled.

Disposal

Waste	Disposal
aqueous filtrate	solvent water mixtures, containing halogen
residue after evaporation of the ethanol	organic solvents, containing halogen

Time

3 hours, without recrystallization and drying

Break

Before recrystallization

Degree of difficulty

Easy

Instruction (batch scale 1 mol)

Equipment

4 L Erlenmeyer flask, thermometer, addition funnel, heatable magnetic stirrer, magnetic stir bar, Buechner funnel (large), suction flask, 1 L beaker, 2 L beaker, ice bath, rotary evaporator

Substances

1,2-dimethoxybenzene (mp 15 °C, bp 205 °C)

138 g (1.00 mol)

potassium bromate	112 g (0.671 mol)
hydrobromic acid (48%)	400 mL (3.5 mol)
sodium disulfite solution (0.2 M)	600 mL
conc. acetic acid (bp 118 °C)	1.3 L
ethanol (bp 78 °C)	200 mL

Reaction

138 g (1.00 mol) 1,2-dimethoxybenzene (veratrol) is filled in a 4 L Erlenmeyer flask with thermometer and magnetic stir bar and dissolved in 1.3 L conc. acetic acid. 112 g (0.671 mol) potassium bromate is added, which initially is not completely dissolved. Then 400 mL (3.5 mol) hydrobromic acid (48%) is slowly added dropwise under stirring at room temperature. At a temperature increase to 60 °C and change in colour of the solution from yellow to brown the addition is interrupted and the solution is cooled down with an ice bath to room temperature. Then the remaining hydrobromic acid is added faster. After complete addition the mixture is stirred for 1 further hour at room temperature.

Work up

The reaction mixture is added to a 2 L beaker filled with 1000 mL ice water and stirred for 30 minutes. The precipitation is sucked off, filled in a 1 L beaker with 600 mL of a 0.2 M sodium disulfite solution and washed. The precipitation is sucked off again, washed in a 1 L beaker with 800 mL water and sucked off again. Crude yield: 339 g

The crude product is recrystallized from 200 mL ethanol. The product is dried in the evacuated desiccator over silica gel for some days until reaching weight constancy.

Yield: 271 g (916 mmol, 92%) 4,5-dibromine-1,2-dimethoxybenzene; mp 87 °C

Comments

By evaporating the solvent from the mother liquor and recrystallization of the residue from ethanol a second less pure crystall fraction can be isolated. The remaining mother liquor contains mainly the side product 4-bromo-1,2-dimethoxybenzene (see analytics).

Waste management

Recycling

The ethanol is evaporated from the mother liquor, collected and redistilled.

Waste disposal

Waste	Disposal
aqueous filtrate	solvent water mixtures, containing halogen
residue after evaporation of the ethanol	organic solvents, containing halogen

Time

1 day without recrystallization and drying

Break

Before recrystallization

Degree os difficulty

Medium (not easy because of the large volume of substances)

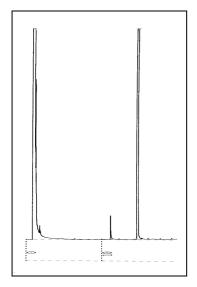
Analytics

GC

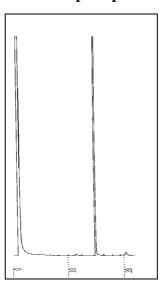
GC conditions:

column: 5CB Low Blend/MS, length 30 m, internal diameter 0.32 mm, film 0.25 μm

inlet: injector temperature 210 $^{\circ}$ C, splitinjection, injected volume 1 μL


carrier gas: H₂, pre-column pressure 50 kPa

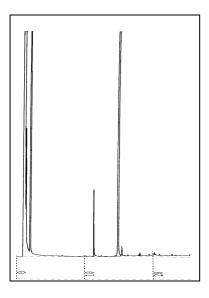
oven: 60 °C (2 min), heating rate 10 °C/min, isotherme 240 °C (50 min)


detector: FID, 310 °C integrator: Shimadzu

Percent concentration was calculated from peak areas.

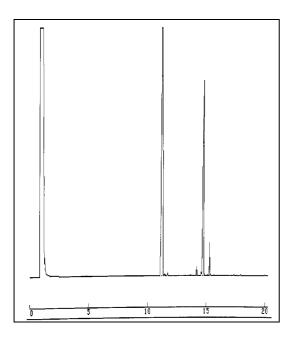
GC of the crude product

GC of the pure product

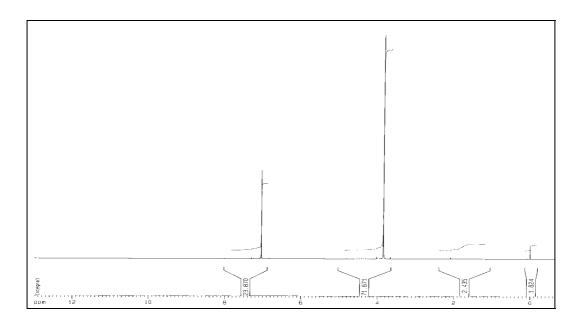


Retention time (min)	Substance
14.9	4,5-dibromo-1,2-dimethoxybenzene
11.2	4-bromo-1,2-dimethoxybenzene

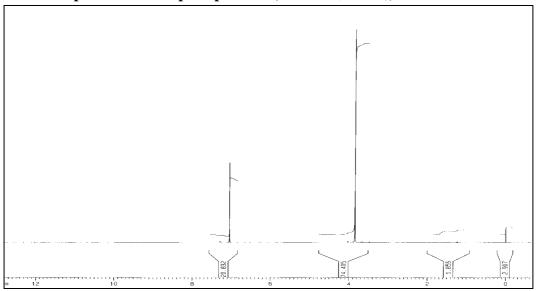
Educt veratrol (retention time = 6.4 min) is not detected.


In the pure product side products are detectable only in traces.

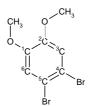
GC of the second crystal fraction

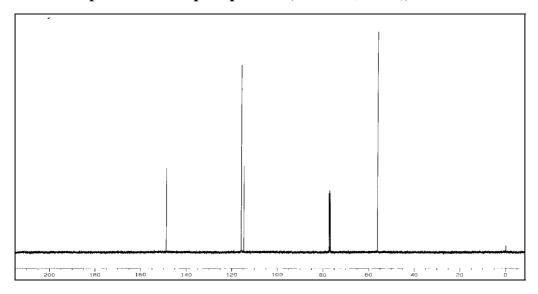

Retention time (min)	Substance	Peak area %
15.1	4,5-dibromo-1,2-dimethoxybenzene	98.3
11.4	4-bromo-1,2-dimethoxybenzene	1.6

GC of the remaining mother liquor

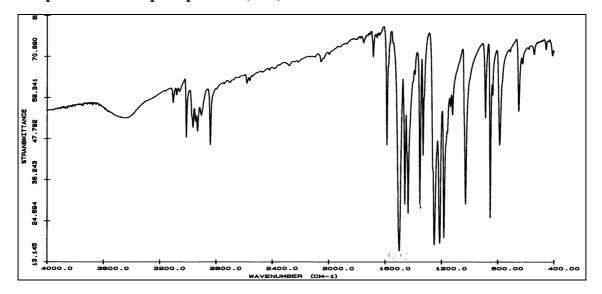


Retention time(min)	Substance	Peak area%
15.0	4,5-dibromo-1,2-dimethoxybenzene	29.4
11.4	4-bromo-1,2-dimethoxybenzene	66.7


 ^{1}H NMR spectrum of the crude product (400 MHz, CDCl $_{3}$)


^{1}H NMR spectrum of the pure product (400 MHz, CDCl $_{3}$)

δ (ppm)	Multiplicity	Number of H	Assignment
3.85	S	6	CH ₃
7.05	S	2	3-H, 6-H



^{13}C NMR spectrum of the pure product (400 MHz, CDCl $_{3})$

δ (ppm)	Assignment
56.14	$\mathbf{C}\mathbf{H}_3$
114.62	C-4, C-5
115.78	C-3, C-6
148.74	C-1, C-2
76.5-77.5	solvent

IR spectrum of the pure product (KBr)

(cm ⁻¹)	Assignment
3100 - 3000	C-H-valence, arene
2840	C-H-valence, alkane
1585	C=C-valence, arene