# 2023 Reduction of D-(+)-camphor with lithium aluminium hydride to an isomeric mixture of (+)-borneol and (-)-isoborneol

# Classification

# Reaction types and substance classes

reaction of the carbonyl group in ketones, reduction, stereoselective addition ketone, alcohol, complex metal hydride, natural product

#### Work methods

working with moisture exclusion, stirring with KPG stirrer, adding dropwise with an addition funnel, heating under reflux, filtering, evaporating with rotary evaporator, sublimating, use of a cooling bath, heating with oil bath

# **Instruction (batch scale 100 mmol)**

## **Equipment**

500 mL three-neck flask, metal reflux condenser, drying tube, protective gas supply, KPG-stirrer, addition funnel with pressure balance, suction flask, Buechner funnel, rotary evaporator, sublimation apparatus, heating plate, vacuum pump, cooling bath, oil bath

#### **Substances**

D-(+)-camphor,  $[\alpha]_D^{20} = +44.0^\circ$  (mp 179 °C) 15.2 g (100 mmol) lithium aluminium hydride 5.32 g (140 mmol) *tert*-butyl methyl ether, dry (bp 55 °C) 280 mL aqueous sodium hydroxide solution (15%) 6 mL potassium carbonate for drying

#### Reaction

The reaction apparatus, consisting of a 500 mL three-neck flask, KPG-stirrer, metal reflux condenser with drying tube and an addition funnel with pressure balance, must be completely dry and preferably rinsed with nitrogen. 160 mL of dry *tert*-butyl methyl ether are filled into

the flask and 5.32 g (140 mmol) lithium aluminium hydride are added at once. The mixture is stirred for 5 minutes and then a solution of 15.2 g (100 mmol) D-(+)-camphor in 100 mL dry *tert*-butyl methyl ether is added dropwise under stirring, so that the ether is moderately boiling. Then the mixture is stirred and heated until reflux for further 3 hours.

#### Work up

Under stirring, the mixture is cooled down in a cooling bath (for safety reasons no ice bath because of LiAlH<sub>4</sub>) to about 0 °C. Then, **very carefully** 6 mL water are added dropwise through an addition funnel, then 6 mL of 15% sodium hydroxide solution and then again 16 mL water to decompose the excessive lithium aluminium hydride. Thereby the reaction mixture is foaming under gas evolution, and it boils. A colourless, viscous precipitate is formed. After the addition has been finished, the mixture is stirred for further 30 minutes and then sucked off over a Buechner funnel. If the filtrate is not clear, it is filtered a second time. Then, the filtrate is dried with potassium carbonate. The drying agent is sucked off, washed with 20 mL *tert*-butyl methyl ether and the solvent is evaporated at a rotary evaporator. A colourless crystalline residue remains as crude product.

Crude yield: 13.4 g; mp 209-210 °C; GC-purity over 99%; ratio isoborneol to borneol 87 : 13

1.00 g of the crude product is sublimated at reduced pressure (about 20 hPa) and an oil bath temperature of about 100 °C. 1.00 g crude product results in 0.970 g sublimated pure product. Yield of sublimated product extrapolated to the total volume of crude product: 13.0 g (84.2 mmol, 84%); mp 211-213 °C;  $[\alpha]_{D}^{20} = -24.090^{\circ}$ 

The product consists of isoborneol and borneol in the ratio of 87: 13 and shows less than 0.1% impurities (GC, see analytics).

#### **Comments**

If the reaction is carried out with racemic camphor, it proceeds as described for the D-(+)-camphor. The product consists of the racemates of borneol and isoborneol, the single enantiomers can be visualized with a chiral GC-column (see analytics).

#### Waste management

#### Recycling

The evaporated *tert*-butyl methyl ether is collected and redistilled.

## Waste disposal

| Waste                                                   | Disposal                       |
|---------------------------------------------------------|--------------------------------|
| solid residue from lithium aluminium hydride hydrolysis | solid waste, free from mercury |
| residue from sublimation                                | solid waste, free from mercury |
| potassium carbonate                                     | solid waste, free from mercury |

#### Time

6 hours until sublimation

#### Break

After the hydrolysis of the lithium aluminium hydride and sucking off the precipitation

# **Degree of difficulty**

Difficult

# **Instruction (batch scale 10 mmol)**

# **Equipment**

100 mL three-neck flask, metal reflux condenser, drying tube, protective gas supply, KPG-stirrer, addition funnel with pressure balance, suction flask, Buechner funnel, rotary evaporator, sublimation apparatus, heating plate, vacuum pump, cooling bath, oil bath

#### **Substances**

D-(+)-camphor,  $[\alpha]_D^{20} = +44.0^\circ \text{ (mp 179 °C)}$  1.52 g (10.0 mmol) lithium aluminium hydride 532 mg (14.0 mmol) *tert*-butyl methyl ether, dry (bp 55 °C) 90 mL aqueous sodium hydroxide solution (15%) 1 mL potassium carbonate for drying

#### Reaction

The reaction apparatus, consisting of a 100 mL three-neck flask, KPG-stirrer, metal reflux condenser with drying tube and an addition funnel with pressure balance, must be completely dry and preferably rinsed with nitrogen. 40 mL of dry *tert*-butyl methyl ether are filled into the flask and 532 mg (14.0 mmol) lithium aluminium hydride are added at once. The mixture is stirred for 5 minutes and then a solution of 1.52 g (10.0 mmol) D-(+)-camphor in 40 mL dry *tert*-butyl methyl ether is added dropwise under stirring, so that the ether is moderately boiling. Then the mixture is stirred and heated under reflux for further 3 hours.

# Work up

Under stirring, the mixture is cooled down in a cooling bath (for safety reasons no ice bath because of LiAlH<sub>4</sub>) to about 0 °C. Then, **very carefully** 1 mL water is added dropwise through an addition funnel, then 1 mL of 15% sodium hydroxide solution and then again 4 mL water to decompose the excessive lithium aluminium hydride. Thereby the reaction mixture is foaming under gas evolution, and it boils. A colourless, viscous precipitate is formed. After the addition has been finished, the mixture is stirred for further 30 minutes and then sucked off over a Buechner funnel. If the filtrate is not clear, it is filtered a second time. Then, the filtrate is dried with potassium carbonate. The drying agent is sucked off, washed with 10 mL *tert*-butyl methyl ether and the solvent is evaporated at a rotary evaporator. A colourless crystalline residue remains as crude product.

Crude yield: 1.31 g; mp 209-210 °C; GC-purity 99%; ratio isoborneol to borneol 87: 13

The crude product is sublimated at reduced pressure (about 20 hPa) and an oil bath temperature of about  $100\,^{\circ}\text{C}$ .

Yield of sublimated pure product: 1.27 g (8.23 mmol, 82%); mp 211-213 °C;  $[\alpha]_{D}^{20} = -24.090^{\circ}$ 

The product consists of isoborneol and borneol in a ratio of 87 : 13 and shows less than 0.1% impurities (GC, see analytics).

#### **Comments**

If the reaction is carried out with racemic camphor, it proceeds as described for the D-(+)-camphor. The product consists of the racemates of borneol and isoborneol, the single enantiomers can be visualized with a chiral GC-column (see analytics).

# Waste management

# **Recycling**

The evaporated *tert*-butyl methyl ether is collected and redistilled.

# Waste disposal

| Waste                                                   | Disposal                       |
|---------------------------------------------------------|--------------------------------|
| solid residue from lithium aluminium hydride hydrolysis | solid waste, free from mercury |
| residue from sublimation                                | solid waste, free from mercury |
| potassium carbonate                                     | solid waste, free from mercury |

#### Time

5 hours until sublimation

#### **Break**

After the hydrolysis of the lithium aluminium hydride and sucking off the precipitation

# **Degree of difficulty**

Difficult

# **Analytics**

#### **Reaction monitoring**

In principle, the reaction can be followed either with GC or TLC, for safety reasons no samples should be taken during reaction.

4

#### **TLC**

TLC-conditions:

adsorbant: TLC-aluminium foil silica gel 60 F<sub>254</sub>

eluent: petroleum ether(40-60 °C)/acetic acid ethyl ester 1:1

visualizing reagent vanillin

 $R_f$  (camphor) 0.75  $R_f$  (borneol/isoborneol) 0.70

# GC

#### GC-conditions I:

Sample preparation: 10 mg substance are dissolved in 1 mL tert-butyl methyl ether.

column: Zebron ZB-1, length 15 m, internal diameter 0.25 mm, film 0.25 µm,

(Phenomenex, Torrance, CA, USA)

inlet: injector temperature 270 °C; split injection 21:1; injected volume 0.3 µL

carrier gas: He, pre-column pressure 100 kPa

oven: 60 °C isotherm

detector: FID, 250 °C, H<sub>2</sub> 29 mL/min; synth air 333 mL/min; integration: Integrator 4290 (Thermo Separation Products)

#### GC-conditions II:

Sample preparation: 50 mg substance are dissolved in 1 mL tert-butyl methyl ether.

chiral column: Cyclosil B, length 2 x 30 m, internal diameter 0.32 mm, film 0.25 µm,

(J & W Scientific, Folsom, CA, USA)

inlet: injector temperature 260 °C; split injection 4.9; injected volume 0.13 µL

carrier gas: H<sub>2</sub>, pre-column pressure 100 kPa

oven: 70 °C (45 min isotherm), 0.3 °C/min to 110 °C (25 min) detector: FID, 300 °C,  $H_2$  25.1 mL/min; synth air 393 mL/min integration: integrator 4290 (Thermo Separation Products)

Percent concentration was calculated from peak areas.

# **GC** of the product from **D-**(+)-camphor (GC-conditions I)



| Retention time (min) | Substance  | Peak area % |
|----------------------|------------|-------------|
| 11.3                 | isoborneol | 87.5        |
| 11.9                 | borneol    | 12.5        |
| 9.8                  | camphor    | 0.0         |

The GCs of the crude product and the pure product are virtually identical, they show less than 0.1% impurities. The peaks below a retention time of 2 minutes originate from the solvent and its impurities.

# GC of the product from racemic camphor (GC-conditions II)



| Retention time (min) | Substance      | Peak area % |
|----------------------|----------------|-------------|
| 58.8                 | (–)-camphor    | 1.27        |
| 59.8                 | (+)-camphor    | 1.30        |
| 84.9                 | (+)-isoborneol | 42.4        |
| 88.3                 | (–)-isoborneol | 42.5        |
| 92.0                 | (–)-borneol    | 5.4         |
| 96.0                 | (+)-borneol    | 5.4         |
| others               | not identified | 1.7         |

From the peak areas results a ratio of isoborneol to borneol = 89:11.

# Optical rotation of the pure product

optical rotation of the pure components (literature values):

 $[\alpha]_D^{20}$  (isoborneol):  $-34.6^{\circ}$  (ethanol)

 $[\alpha]_D^{20}$  (borneol): +37.7° (ethanol)

optical rotation of the pure product mesured from a 3% solution in ethanediol:

 $\left[\alpha\right]_{D}^{20}=-24.090^{\circ}$ 

result: ratio of isoborneol to borneol = **85**: **15**.

# $^{1}H$ NMR spectrum of the crude product (250 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR spectrum of the pure product (250 MHz, CDCl<sub>3</sub>)



| δ (ppm)   | Multiplicity | Rel. Intensity | Assignment                                                                  |
|-----------|--------------|----------------|-----------------------------------------------------------------------------|
| 0.82      | S            |                | CH <sub>3</sub> (isoborneol)                                                |
| 0.91      | S            |                | CH <sub>3</sub> (isoborneol)                                                |
| 1.02      | S            |                | CH <sub>3</sub> (isoborneol)                                                |
| 3.58-3.65 | m            | 86             | CH – OH (isoborneol)                                                        |
| 3.96-4.40 | m            | 14             | CH – OH (borneol)                                                           |
| 0.8–2.4   | m            |                | other ring protons in isoborneol and borneol and CH <sub>3</sub> in borneol |

# $^{13}\text{C}$ NMR spectrum of the pure product (250 MHz, CDCl $_3)$



| δ (ppm) Isoborneol | δ (ppm) Borneol | Assignment                           |
|--------------------|-----------------|--------------------------------------|
| 79.92              | 77.37           | CH(OH)                               |
| 48.97              | 49.50           | $\mathbf{C}_{	ext{quart}}$           |
| 46.35              | 48.03           | $\mathbf{C}_{	ext{quart}}$           |
| 45.05              | 45.11           | СН                                   |
| 40.41              | 39.04           | CH <sub>2</sub>                      |
| 33.92              | 28.29           | CH <sub>2</sub>                      |
| 27.25              | 25.93           | CH <sub>2</sub>                      |
| 20.49              | 20.20           | $CH_3 - C - CH_3$                    |
| 20.12              | 18.69           | $CH_3 - C - CH_3$                    |
| 11.33              | 13.34           | CH <sub>3</sub> at the bridge head C |
| 76.5-77.5          |                 | solvent.                             |

# IR spectrum of the crude product (KBr)



# IR spectrum of the pure product (KBr)



| (cm <sup>-1</sup> ) | Assignment              |
|---------------------|-------------------------|
| 3370                | O – H – valence         |
| 2983–2876           | C – H – valence, alkane |