3015 Synthesis of iodocyclohexane from cyclohexane and iodoform

Literature

- P. R. Schreiner, O. Lauenstein, E. D. Butova, and A. A. Fokin, *Angew. Chem.* **1999**, *111*, 2956-2958; *Angew. Chem. Int. Ed. Engl.* **1999**, *38*, 2786-2788
- P. R. Schreiner, O. Lauenstein, E. D. Butova, P. A. Cunchenko, I. V. Kolomistin, A. Wittkopp, G. Feder, A. A. Fokin, *Chem. Eur. J.*, **2001**, *7*, 4997

Classification

Reaction types and substance classes:

iodination, radical reaction alkane, iodoalkane

Work methods:

working with light exclusion, stirring with magnetic stir bar, shaking out, extracting, filtering, evaporating with rotary evaporator, distilling under reduced pressure

Instruction (batch scale 50 mmol)

Equipment

250 mL round bottom flask, magnetic stirrer, magnetic stir bar, distillation apparatus, vacuum pump, rotary evaporator, oil bath

Substances

cyclohexane (bp 81 °C)
180 mL, 140 g, 1.66 mol, iodoform (triiodomethane) (mp 123 °C)
19.7 g (50.0 mmol)
sodium hydroxide
28.2 g (706 mmol)
cyclohexane (bp 81 °C)
150 mL

Reaction

180 mL (140 g, 1.66 mol) cyclohexane, 28.2 g (706 mmol) finely powdered NaOH and 19.7 g (50.0 mmol) iodoform are filled into a 250 mL round bottom flask equipped with an efficient magnetic stir bar. The flask is locked with a glass stopper and is wrapped with tin foil in order

1

to protect the content from light effect. The mixture is stirred for 48 hours at topmost-possible stirring speed at room temperature.

Work up

The mixture is filtered and the solid residue five times extracted with 30 mL cyclohexane each. From the organic phases the solvent is removed with a rotary evaporator under slightly reduced pressure (300 hPa). A greasy liquid remains as crude product.

Crude yield: 8.90 g

The crude product is distilled at reduced pressure.

Yield: 5.80 g; (27.6 mmol, 55%); bp 72 °C (13 hPa), clear, easily yellow, viscous liquid.

Waste management

Waste disposal

Waste	Disposal
filter residue	solid waste, free from mercury
evaporated cyclohexane	organic solvents, halogen free
distillation residue	dissolve in a small amount of acetone, then:
	organic solvents, containing halogen

Comments

Since the reaction mixture is heterogeneous, the reaction speed depends strongly on the stirring speed.

Time

50 hours, with 48 hours of stirring

Break

Before the work up

Degree of difficulty

Easy

Instruction (batch scale 10 mmol)

Equipment

100 mL round bottom flask, magnetic stirrer, magnetic stir bar, microdistillation apparatus, vacuum pump, rotary evaporator, oil bath

Substances

cyclohexane (bp 81 °C) 60 mL, (46.8 g, 556 mmol)

iodoform (triiodomethane) (mp. 123 °C) 3.94 g (10.0 mmol) sodium hydroxide 5.65 g (142 mmol)

cyclohexane (bp 81 °C) 50 mL

Reaction

80 mL (46.8 g, 556 mmol) cyclohexane, 5.65 g (142 mmol) finely powdered NaOH and 3.94g (10.0 mmol) iodoform are filled into a 100 mL round bottom flask equipped with an efficient magnetic stir bar. The flask is locked with a glass stopper and is wrapped with tin foil in order to protect the content from light effect. The mixture is stirred for 48 hours with topmost-possible stirring speed at room temperature.

Work up

The mixture is filtered and the solid residue three times extracted with 10 mL cyclohexane each. From the organic phases the solvent is removed with a rotary evaporator under slightly reduced pressure (300 hPa). A greasy liquid remains as crude product.

Crude yield: 1.90 g

The crude product is distilled in a microdistillation apparatus at reduced pressure.

Yield: 1.20 g (5.71 mmol, 57%, bp 72 °C (13 hPa), clear, easily yellow, viscous liquid.

Waste management

Waste disposal

Waste	Disposal
filter residue	solid waste, free from mercury
abrotiertes cyclohexane	organic solvents, halogen free
distillation residue	dissolve in a small amount of acetone, then:
	organic solvents, containing halogen

3

Comments

Since the reaction mixture is heterogeneous, the reaction speed depends strongly on the Rührgeschwindigkeit.

Time

50 hours, with 48 hours of stirring

Break

Before the work up

Degree of difficulty

Easy

Analytics

GC

Sample preparation:

One drop of the compound is dissolved in 1 mL tert-butyl methyl ether, 1 µL is injected.

GC conditions:

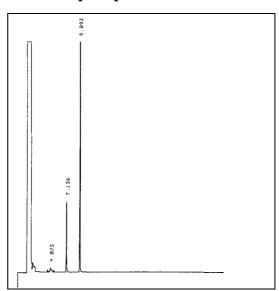
column: Macherey und Nagel, SE-54, 326-MN-30705-9, 25 m, ID 0.32 mm, DF 0.25 µm

inlet: Gerstel KAS, injector 250 °C;

split injection: 1:20, injected volume 1 μL

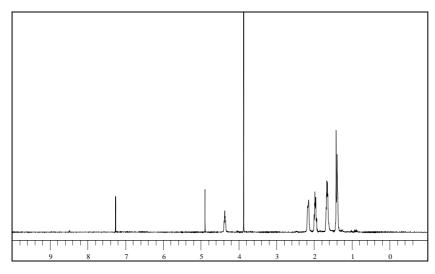
carrier gas: nitrogen, pre-column pressure 62 kPa, flow rate 1.04 mL/min

oven: 80 °C (1 min), 5 °C/min, 250 °C (30 min)

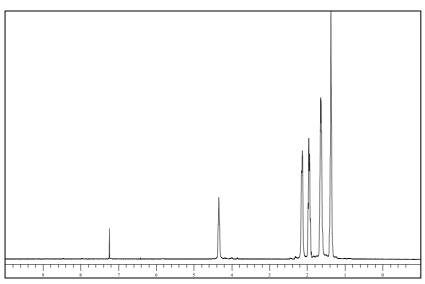

detector: FID, 275 °C

Percent concentration was calculated from peak areas.

GC of the crude product

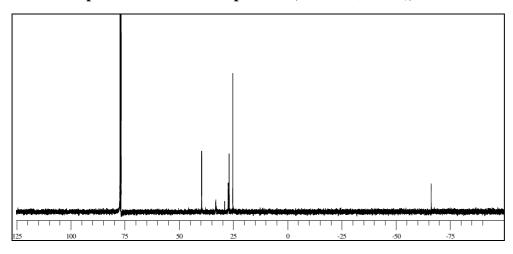

7 1.21 5.3939 7 1.21

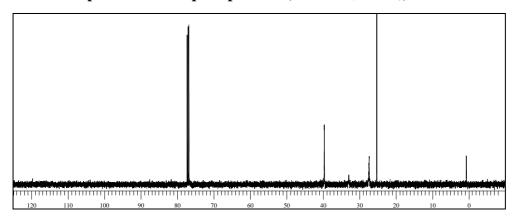
GC of the pure product



Retention time	Substance		Peak area %	
(min)		Substance		Pure product
9.1	product (iodocyclohexane)		72	81
7.1	unidentified	(probably thermic	15	16
others	unidentified	decomposition products)	13	3.5

 ^{1}H NMR spectrum of the crude product (500 MHz, CDCl $_{3})$


¹H NMR spectrum of the pure product (500 MHz, CDCl₃)

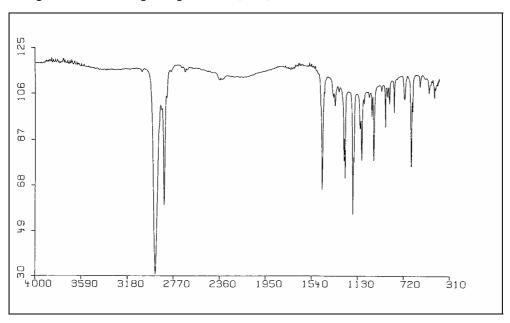

δ (ppm)	Multiplicity	Number of H	Assignment
1.32 – 1.42	M	3	CH ₂
1.58 - 1.69	M	3	C H ₂
1.89 - 2.00	M	2	C H ₂
2.10 - 2.18	M	2	C H ₂
4.30 - 4.38	M	1	СНІ
7.26			solvent

The signal at 3.87 ppm in the spectrum of the crude product originates from the diiodmethane.

 ^{13}C NMR spectrum of the crude product (125 MHz, CDCl $_3$)

 ^{13}C NMR spectrum of the pure product (125 MHz, CDCl $_{\!3})$

δ (ppm)	Assignment
25.2	C-4
27.3	C-3, C-5
32.9	C-1
39.6	C-2, C-6
76.5-77.5	solvent



The signal at - 66.3 ppm in the spectrum of the crude product originates from the diiodmethane.

IR spectrum of the crude product (film)

IR spectrum of the pure product (film)

(cm ⁻¹)	Assignment
2931, 2875, 2853, 2829	C-H-valence, alkane
574	C-I-valence