3033 Synthesis of acetylenedicarboxylic acid from meso-dibromosuccinic acid

\[
\begin{align*}
\text{HOOC} & \quad \text{Br} & \quad \text{Br} & \quad \text{COOH} \\
\text{H} & \quad \text{H} & \quad & \\
\text{KOH} & \quad & & \\
\text{HOOC} & \quad \equiv & \quad \text{COOH}
\end{align*}
\]

\[
\begin{align*}
\text{C}_4\text{H}_2\text{O}_4 & \quad \text{(275.9)} \\
\text{KOH} & \quad \text{(56.1)} \\
\text{C}_4\text{H}_2\text{O}_4 & \quad \text{(114.1)}
\end{align*}
\]

Classification

Reaction types and substance classes
- elimination
- bromoalkane, alkyne, carboxylic acid

Work methods
- heating under reflux, stirring with magnetic stir bar, shaking out, extracting, filtering, evaporating with rotary evaporator, heating with oil bath

Instruction (batch scale 100 mmol)

Equipment
- 500 mL round bottom flask, reflux condenser, heatable magnetic stirrer, magnetic stir bar, suction flask, Buechner funnel, separating funnel, possibly liquid liquid extractor, desiccator, rotary evaporator, oil bath

Substances
- *meso*-dibromosuccinic acid (mp 255-256 °C; product from experiment number 3002) 27.6 g (100 mmol)
- potassium hydroxide 31 g (550 mmol)
- ethanol (95%), (bp 78 °C) 200 mL
- sulphuric acid (conc.) 17 mL
- tert-butyl methyl ether (bp 55 °C) 250 mL
- sodium sulfate for drying

Reaction
- 27.6 g (100 mmol) *meso*-dibromosuccinic acid are filled in a 500 mL round bottom flask with magnetic stir bar and reflux condenser containing the solution of 31 g (550 mmol) potassium hydroxide in 180 mL ethanol. The reaction mixture is heated under stirring for 45 minutes under reflux.
Work up
After cooling down the solid is sucked off, and washed with 20 mL ethanol in small portions and dried in the desiccator. Yield: about 40 g

The solid is dissolved in 65 mL water and diluted with a solution of 2 mL concentrated sulphuric acid in 7.5 mL water. It is important to use these exact volumes, since that results in a pH-value of the solution so that the hardly soluble mono-potassium salt of the acetylene carboxylic acid precipitates. For a complete crystallization it is stored for a minimum of 3 hours or over night. The precipitation is sucked off and dissolved in a mixture from 15 mL conc. sulphuric acid and 60 mL water. The solution is shaken out in a separating funnel five times with 50 mL *tert*-butyl methyl ether each. The ether phase is dried with sodium sulfate. After filtering of the drying agent the solvent is evaporated at a rotary evaporator. The product remains as colourless solid, which is dried in the desiccator.
Yield: 7.89 g (69.2 mmol, 69%); colourless solid; mp 179-181 °C (decomposition)

Comments
The precipitation of the mono-potassium salt is a purifying operation, impurities remain in the solution.
Alternatively to shaking out of the product it can also be extracted from the acidic aqueous solution in a liquid liquid extractor for about 7 hours.

Waste management

Recycling
The evaporated *tert*-butyl methyl ether is collected and redistilled.

Waste disposal

<table>
<thead>
<tr>
<th>Waste</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkaline ethanolic filtrate</td>
<td>neutralize, then: solvent water mixtures, containing halogen</td>
</tr>
<tr>
<td>acidic aqueous filtrate</td>
<td>neutralize, then: solvent water mixtures, containing halogen</td>
</tr>
<tr>
<td>acidic aqueous phase</td>
<td></td>
</tr>
<tr>
<td>sodium sulfate</td>
<td>solid waste, free from mercury</td>
</tr>
</tbody>
</table>

Time
2–3 hours
(10 hours by using an extractor)

Break
After heating under reflux
After precipitation of the mono-potassium salt

Degree of difficulty
Easy
Instruction (batch scale 10 mmol)

Equipment
50 mL round-bottom flask, reflux condenser, heatable magnetic stirrer, magnetic stir bar, suction flask, Buechner funnel, separating funnel, possibly liquid liquid extractor, desiccator, rotary evaporator, oil bath

Substances
- *meso*-dibromosuccinic acid (mp 255-256 °C; 2.76 g (10.0 mmol) product from experiment number 3002)
- potassium hydroxide 3.1 g (55 mmol)
- ethanol (95%), (bp 78 °C) 23 mL
- sulphuric acid (conc.) 1.7 mL
- *tert*-butyl methyl ether (bp 55 °C) 25 mL
- sodium sulfate for drying

Reaction
2.76 g (10.0 mmol) *meso*-dibromosuccinic acid are filled in a 50 mL round bottom flask with magnetic stir bar and reflux condenser containing the solution of 3.1 g (55 mmol) potassium hydroxide in 18 mL ethanol. The reaction mixture is heated under stirring for 45 minutes under reflux.

Work up
After cooling down the solid is sucked off, washed with 5 mL ethanol in small portions and dried in the desiccator. Yield: about 4 g

The solid is dissolved in 6.5 mL water and then diluted with a solution of 0.2 mL conc. sulphuric acid in 0.75 mL water. It is important to use these exact volumes, since that results in a pH-value of the solution so that the hardly soluble mono-potassium salt of the acetylenecarboxylic acid precipitates. For a complete crystallization it is stored for a minimum of 3 hours or overnight. The precipitation is sucked off and dissolved in a mixture of 1.5 mL conc. sulphuric acid and 6 mL water. The solution is shaken out in a separating funnel five times with 5 mL *tert*-butyl methyl ether each. The ether phase is dried with sodium sulfate. After filtering of the drying agent the solvent is evaporated at a rotary evaporator. A colourless solid remains as product, which is dried in the desiccator.

Yield: 619 mg (5.43 mmol, 54%); colourless residue, mp 179-181 °C (decomposition)

Comments
The precipitation of the mono potassium salt is a purifying operation, impurities remain in the solution.
Alternatively to shaking out of the product it can also be extracted from the acidic aqueous solution in a liquid liquid extractor for about 7 hours.
Waste management

Recycling
The evaporated tert-butyl methyl ether is collected and redistilled.

Waste disposal

<table>
<thead>
<tr>
<th>Waste</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkaline ethanolic filtrate</td>
<td>neutralize, then: solvent water mixtures, containing halogen</td>
</tr>
<tr>
<td>acidic aqueous filtrate</td>
<td>neutralize, then: solvent water mixtures, containing halogen</td>
</tr>
<tr>
<td>acidic aqueous phase</td>
<td></td>
</tr>
<tr>
<td>sodium sulfate</td>
<td>solid waste, free from mercury</td>
</tr>
</tbody>
</table>

Time
2–3 hours

Break
After heating under reflux
After precipitation of the mono potassium salt

Degree of difficulty
Easy

Analytics

13C NMR spectrum of the product (62.5 MHz, acetone-D$_6$)

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.5</td>
<td>C≡C</td>
</tr>
<tr>
<td>153.8</td>
<td>COOH</td>
</tr>
<tr>
<td>30.8</td>
<td>CH$_3$ (acetone-D$_6$)</td>
</tr>
<tr>
<td>207.5</td>
<td>C=O (acetone-D$_6$)</td>
</tr>
</tbody>
</table>
IR spectrum of the product (ATR)

<table>
<thead>
<tr>
<th>(cm(^{-1}))</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300-2400</td>
<td>O-H-valence, carboxylic acid</td>
</tr>
<tr>
<td>1677</td>
<td>C=O-valence, carboxylic acid</td>
</tr>
</tbody>
</table>