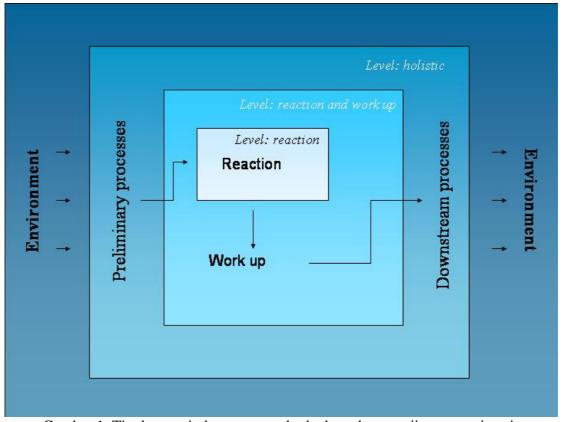
Analisis input

Ringkasan


Analisis input adalah suatu metoda untuk mendeteksi kelemahan utama pada produk dan proses. Hal ini didasarkan pada aturan ISO 14040 untuk melaksanakan kesetimbangan ekosistem (*ecobalances*). Berlawanan dengan *ecobalances*, dalam hal ini impact assessment tidak terlibat. Pendekatannya berdasarkan pada analisis bahan dan aliran energi.

Holistic

Contoh analisis input berikut ini akan menunjukkan prosedur analisisnya. Hasil yang diperoleh dari contoh ini akan dibahas ditempat lainnya (lihat teks "Aspek lingkungan pada pemberian energi terhadap reaksi kimia").

Contoh analisis input

Reaksi "asetalisasi 3-nitrobenzaldehida dengan etanadiol menjadi 2-(3-nitrofenil)-1,3-dioksolan terkatalisis asam" diuji dengan menggunakan analisis input. Oleh karena itu reaksi klasik yang dilakukan dibandingkan dengan penggunaan *microwave* sebagai alternatif lainnya. Metoda klasik sebagai pembanding, menggunakan penangas minyak dan mantel pemanas sebagai penghasil panas. Ada beberapa tingkatan pertimbangan yang berbeda pada analisis. Pada tingkat pertama yaitu tingkat reaksi hanya bahan dan aliran energi yang berhubungan langsung dengan reaksi yang diuji. Pada tingkat kedua yaitu tingkat sintesis terdapat input pada reaksi dan penyelesaian reaksi (*work up*). Tingkat ketiga dan tingkat terakhir merupakan pandangan secara *holistic*. Pada tingkat ini semua aliran input diseimbangkan dari pengamatan bahan-bahan awal sampai menjadi produk akhir (pembuangan limbah dan bahan residu tidak dilibatkan karena diasumsikan jumlahnya tetap dan perlakuan limbah). Pada Gambar 1 berbagai tingkatan tersebut diilustrasikan secara sistematik.

Gambar 1. Tingkat pertimbangan yang berbeda pada pengujian suatu sintesis

Analisis input mencatat penggunakan bahan-bahan yang berhubungan dengan jumlah. Pada metoda ini, toksisitas yang potensial dari setiap senyawa tidak diperhatikan. Dengan cara ini, tidak mungkin dibuat suatu pernyataan yang absolut yang berhubungan dengan polusi lingkungan. Namun, prosedure ini mampu menunjukkan titik kelemahan yang berhubungan dengan proses dengan sedikit biaya operasi dan kontribusi terhadap perbaikan prosedur.

Pencatatan Data Reaksi

Aliran input dan output pada tingkatan yang berbeda dicatat melalui pengukuran-pengukuran dan dijelaskan pada paragraf berikut ini. Massa dari bahan yang digunakan diperoleh dari petunjuk yang ada. Data pada konsumsi energi dicatat berdasarkan kapasitas alat instrument tersebut. Penggunaan air pendingin juga diukur.

Bahan dan aliran energi pada reaksi - input

	Penangas minyak	Mantel pemanas	microwave	
3-Nitrobenzaldehida	7,55	7,55	7,55	g
Etilen glikol	3,42	3,42	3,42	g

Asam 4-toluensulfonat	0,40	0,40	0,40	g
monohidrat				
sikloheksana	90.0	90.0		cm ³
Air pendingin	12.1	12.1		cm ³
Pemberian energi panas	1444	1008	180	kJ
Pengadukan	18	18	54	kJ
Pengaturan Pompa	43	43	43	kJ
minyak/suhu cryostatic				

Bahan dan aliran energi pada sintesis (Reaksi dan penylesaian) - input

	Penangas	Mantel	microwave	
	minyak	pemanas		
3-Nitrobenzaldehida	7,55	7,55	7,55	g
Etilen glikol	3,42	3,42	3,42	g
Asam 4-toluensulfonat monohidrat	0,40	0,40	0,40	g
sikloheksana	90,0	90,0		cm ³
Air pendingin	12,8	12,5	0,4	cm ³
1 0	•	·		
Petroleum eter (40-60)	25,0	25,0	25,0	cm ³
Dietil eter	25,0	25,0	25,0	cm ³
Pemberian energi panas	1627	1044	216	kJ
Pengadukan	18	18	54	kJ
Pompa minyak/	86	86	86	kJ
cryostat				

Bahan dan aliran energi pada sintesis - output

	Penangas	Mantel	microwave	
	minyak	pemanas		
limbah	108,16	108,16	47,31	g
1,3-dioksolan	7,8	7,8	7,8	g
Air pendingin	12,8	12,5	0,40	dm ³

Tingkat input dan output pada reaksi dan sintesis dapat dengan mudah dibandingkan karena jumlah yang terbatas dari aliran yang berbeda. Jelas lebih sukar untuk mencatat aliran bahan dari sudut pandangan secara holistik. Untuk data ini harus digabungkan dari bankdata yang berbeda dan koneksi secara berhubungan.

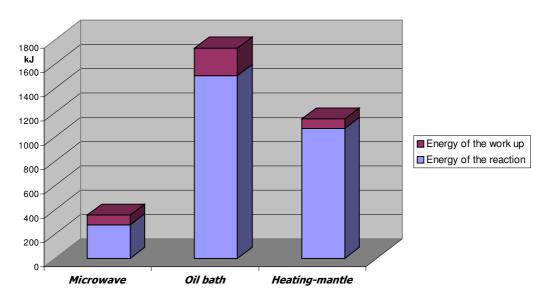
Bahan dan aliran energi – pandangan secara keseluruhan / holistic

Bahan dan aliran energi dari sudut pandang secara keseluruhan sangat luas. Oleh karena ini disajikan sebagai apendik dari penjelasan ini. Setelah penentuan bahan dan aliran energi, data dari percobaan yang berbeda dibandingkan satu sama lain dan akan dievaluasi. Tingkat analisis dipertimbangkan.

Evaluasi

Evaluasi pada percobaan meliputi dua aspek. Pertama aliran bahan dan aspek lain adalah aliran energi yang akan dievaluasi.

Penggunaan/konsumsi energi


Dalam hal ini sangat mudah untuk dilihat bahwa penggunaan *microwave* merupakan metode yang paling disukai dari sudut pandang energinya. Dalam hal ini, waktu reaksi yang pendek meemiliki peran yang besar. Pada variasi metode klasik, pemberian energi menggunakan mantel pemanas lebih disukai. Alasannya adalah isolasi yang baik pada keranjang/*basket* pemanas dibandingkan penangas minyak. Tabel 4 menunjukkan energi listrik yang diperlukan untuk setiap proses.

Tabel 4. Penggunaan energi untuk setiap proses

	Microwave	Penangas	Mantel	
		minyak	pemanas	
Energi yang diperlukan reaksi	277	1505	1069	kJ
Energi yang dieprlukan work up	79	227	79	kJ
Kebutuhan energi total	356	1732	1148	kJ

Diantara perbedaan konsumsi energi pada variasi reaksi, distribusinya pada sinstesis sangat menarik. Berdasarkan pengujian sintesis dapat ditunjukkan bahwa peran konsumsi energi pada tahap *workup* dapat diabaikan bila dibandingkan dengan energi reaksi. Untuk itulah mengapa perbaikan sebaiknya diterapkan pada reaksi dan tidak pada metoda *work up*. Laju working up yang berhubungan dengan konsumsi energi secara keseluruhan disajikan pada Gambar 2.

Energy Consumption of the Synthesis

Gambar 2. Konsumsi energi pada reaksi dan working up

Konsumsi bahan

Perbandingan variasi analisis yang berhubungan dengan aliran bahan versi alternatif dengan microwave juga lebih baik daripada dengan pemanasan metoda klasik. Penggunaan microwave dapat dilakukan tanpa entrainer dan air pendingin dengan penggunaan jumlah yang sama pada bahan awal dan katalis. Dengan memperhatikan proses awal, keuntungan yang dijelaskan dari sintesis dengan microwave menjadi lebih nyata/jelas. Adanya sikloheksana sebagai *entrainer* mencegah polusi lingkungan yang berhubungan dengan produksi senyawa ini. Dari sudut pandang secara keseluruhan harus ditambahkan bahwa penurunan konsumsi energi menyebabkan konsumsi yang lebih rendah dari adanya sumber energi primer yang terbatas yaitu batubara, minyak bumi dan gas alam.

Apendiks

Data yang diberikan pada tabel berikut menyatakan input dan output secara berurutan pada contoh yang diujikan "asetalisasi". Bahan-bahan ini tidak dapat dihubungan secara langsung dengan reaksi berdasarkan pada proses awal.

Contoh:

Batubara coklat ditabelkan sebagai input reaksi digunakan untuk memberikan sumber listrik yang digunakan untuk reaksi

Table: Bahan dan energi secara holistic/keseluruhan – Input

	Mantel pem	anas	Microwave		Penangas minyak	
Bahan kimia utama						
Bahan kimia anorganik						
Natrium hidrogen karbonat	5,39	g	5,39	g	5,39	g
Oksigen	3,87	g	3,87	g	3,87	g
Bahan Kimia organik						
Dietil eter	17,84	g	17,84	g	17,84	g
Petroleum eter	16,60	g	16,60	g	16,60	g
Tert-butil metil eter	79,81	g	79,81	g	79,81	g
Udara	1035,43	g	1035,43	g	1035,43	g
Bahan kimia khusus (Fine						
chem)						
Asam 4-toluensulfonat-mono-	400,00	mg	400,00	mg	400,00	mg
hidrat						
Keperluan energi keseluruhan	20368,13	kJ	13351,52	kJ	22362,69	kJ
(CED)						
Mineral						
Natrium sulfat	43142,86	mg	43142,86	mg	43142,86	mg
Bahan dasar terendapkan (RiD)						
Sumber energi (RiD)						
Batubara coklat	472,88	g	386,99	g	536,03	g
Gas alam	98,38	g	42,36	g	101,62	g
Minyak bumi	59,52	g	14,46	g	60,36	g

Kayu	3,70	mg	3,70	mg	3,70	mg
Batubara	137,11	g	105,83	g	158,70	g
Uranium	7,07	mg	7,07	mg	7,07	mg
Sumber energi yang digunakan						
tidak sbg sumber energi.						
Bauksit	32,89	mg	9,47	mg	32,89	mg
Bentonit	14,59	mg	2,23	mg	14,59	mg
Kalsium sulfat	1,46	mg	0,22	mg	1,46	mg
Dolomit	0,81	mg	0,09	mg	0,61	mg
Besi	55,86	mg	8,24	mg	55,86	mg
Gamping (Limestone)	16323,53	mg	14114,45	mg	16175,79	mg
Gravel	0,15	mg	0,02	mg	0,15	mg
Mineral (RiD)						
Kalsium fluorida	0,09	mg	0,09	mg	0,09	mg
Natrium fluorida	163,69	mg	95,43	mg	153,69	mg
Olivine	0,46	mg	0,07	mg	0,46	mg
Pasir	277,08	mg	269,87	mg	277,08	mg
Slate	4,03	mg	0,65	mg	4,03	mg
Belerang	35263,64	mg	35255,11	mg	35263,64	mg
Lempung	1,25	mg	0,14	mg	1,25	mg
Air	380,30	kg	305,82	kg	389,35	kg
kJ	20368,13	kJ	13351,52	kJ	22362,69	kJ
kg	382,32	kg	307,62	kg	391,46	kg

Table : Bahan dan energi secara keseluruhan – Output

Tuble : Bulluit dull eller gi seed	Mantel pe		Penangas minyak		Microwave	
Limbah						
Limbah untuk dibuang (WfD)						
Limbah yang terbakar	108,12	g	108,12	g	38,01	g
Limbah, spt limbah	62,02	mg	62,02	mg	6,35	mg
rumahtangga						
Limbah, lainnya (WfD)						
Lumpur selokan (sewage)	2,92	mg	3,57	mg	2,05	mg
Limbah, tidak spesifik	213,75	mg	213,75	mg	153,60	mg
Tumpahan	3019,41	g	3019,41	g	3018,85	g
Abu dan cinder	8696,78	mg	12917,99	mg	2843,89	mg
Logam	0,48	mg	0,48	mg	0,09	mg
Limbah radioaktif (sangat						
radioaktif)						
Limbah berbahaya	2,89	mg	2,89	mg	2,89	mg
Refuse khusus	42,42	mg	47,90	mg	3,67	mg
Limbah untuk dieksploitasi						
(WfE)						
Limbah lainnya (WfE)						

Abu dan cinder	4907,43	mg	7312,27	mg	1641,61	mg
Penyaring debu	2301,52	mg	2301,52	mg	2301,52	mg
Gypsum (REA)	7946,59	mg	7946,59	mg	7946,59	mg
Abu kasar	344,03	mg	344,03	mg	344,03	mg
Natrium sulfat	75,49	mg	75,49	mg	75,49	mg
Pelet pada ruang pelelehan	2884,42	mg	2884,42	mg	2884,42	mg
Campuran bahan yang dapat	10,41	mg	10,41	mg		
didaur ulang						
Abu pada ruang terfluidasi	230,15	mg	230,15	mg	230,15	mg
Limbah tidak spesifik	30,92	mg	41,83	mg	16,10	mg
Asam nitrat encer dengan	1075,51	g	1075,51	g	1075,51	g
sedikit nitrat						
Bahan kimia utama						
Bahan kimia anorganik						
Natrium hidrogen karbonat	5,39	g	5,39	g	5,39	g
Bahan kimia organik	0,08	kg	0,08	kg	0,08	kg
Asam benzoat	2272,18	mg	2272,18	mg	2272,18	mg
Asam maleat	2272,18	mg	2272,18	mg	2272,18	mg
Tert-butil metil eter	79,81	g	79,81	g	79,81	g
Emisi (tanah)						
Logam (W)						
Aluminium	1,63	mg	1,63	mg	0,59	mg
Timbal	0,30	mg	0,30	mg	0,30	mg
Mangan	0,58	mg	0,58	mg	0,58	mg
Logam tidak spesifik	21,92	mg	21,92	mg	5,35	mg
Molibdenum	0,07	mg	0,07	mg	0,07	mg
Natrium	14,84	mg	14,84	mg	3,12	mg
Uranium	0,10	mg	0,10	mg	0,10	mg
Vanadium	0,06	mg	0,06	mg	0,06	mg
Emisi (udara)						
Partikel	0,14	mg	0,14	mg	0,14	mg
Debu	218,43	mg	291,38	mg	61,94	mg
Debu (>PM10)	9,36	mg	9,36	mg	9,36	mg
Debu (PM10)	21,87	mg	21,87	mg	21,87	mg
Senyawas anorganik (L)						
Amonia	22,17	mg	22,83	mg	18,73	mg
Hidrogen klorida	61,60	mg	81,24	mg	33,74	mg
Dinitrogen monoksida	482,77	mg	483,55	mg	481,71	mg
Hidrogen fluorida	8,39	mg	11,10	mg	4,71	mg
Karbon dioksida (L)	1,03	kg	1,15	kg	0,77	kg
Karbon dioksida (fosil)	1031,75	g	1154,70	g	768,98	g
Karbon monoksida	301,32	mg	315,80	mg	180,62	mg
Logam (L)						
Logam tidak spesifik	0,16	mg	0,16	mg	0,02	mg
Nikel	0,09	mg	0,10	mg	0,08	mg

Selenium	0,09	mg	0,09	mg	0,09	mg
NOx	1997,64	mg	2144,39	mg	1368,71	mg
Radio nuklida (L)	431,85	kBq	431,85	kBq	431,85	kBq
Radio nuklida total	431852	Bq	431852,39	Bq	431852,39	Bq
Belerang dioksida	2729,63	mg	3253,10	mg	1706,05	mg
Hidrogen sulfida	0,18	mg	0,18	mg	0,18	mg
Hidrogen	1,56	mg	1,56	mg	0,65	mg
VOC (L)						
Metana	2420,85	mg	2748,18	mg	1533,88	mg
NMVOC (L)						
Benzena	0,13	mg	0,17	mg	0,08	mg
NMVOC, Aromatik tidak	4,39	mg	4,39	mg	0,75	mg
spesifik						
Heksana	0,12	mg	0,12	mg	0,12	mg
NMVOC, mengandung	0,00	kg	0,00	kg	0,00	kg
oksigen (L)						
Formaldehida	0,08	mg	0,08	mg	0,08	mg
NMVOC, tidak spesifik	175,02	mg	1758,75	mg	169,95	mg
VOC (hidrokarbon)	108,74	mg	108,74	mg		
Emisi (Air)						
Emisi (W)						
Karbonat	13,72	mg	13,72	mg	2,01	mg
Klorida	120,24	mg	120,24	mg	67,86	mg
Padatan terlarut	10,78	mg	10,78	mg	3,57	mg
Padatan tersuspensi	15,98	mg	15,98	mg	3,21	mg
Fluorida	0,13	mg	0,13	mg	0,13	mg
Asam sebagai H(+)	4,05	mg	4,05	mg	0,62	mg
Amonia	0,29	mg	0,29	mg	0,29	mg
Amonium	1,42	mg	1,42	mg	1,16	mg
Nitrat	0,42	mg	0,42	mg	0,16	mg
Senyawa Nitrogen tidak	0,49	mg	0,49	mg	0,17	mg
spesifik						
Sulfat	628,11	mg	628,11	mg	609,93	mg
Senyawa anorganik (W)						
Klorin	0,87	mg	0,87	mg	0,87	mg
Detergen, minyak	4,01	mg	4,01	mg	0,43	mg
Hidrokarbon (W)						
Hidrokarbon tidak spesifik	3,03	mg	3,03	mg	0,42	mg
Hidrokarbon tidak spesifik	0,65	mg	0,65	mg	0,65	mg
Fenol	0,07	mg	0,07	mg	0,00	mg
Senyawa Organik terlarut	1,17	mg	1,17	mg		
Senyawa Organik tidak	0,13	mg	0,13	mg		
spesifik						
Parameter indikator						
BSB-5	2,55	mg	2,55	mg	0,71	mg

CSB	15,76	mg	15,76	mg	4,03	mg
TOC	1,37	mg	1,37	mg	1,37	mg
Bahan kimia (Fine chem)						
1,3-dioksolan 3	7800,00	mg	7800,00	mg	7800,00	mg
Mineral						
Gypsum (REA)	3125,44	mg	4666,75	mg	1032,30	mg
Natrium sulfat	43142,9	mg	43142,86	mg	43142,86	mg
Air	379,28	kg	388,15	kg	305,05	kg
kJ	20368,1	kJ	22362,69	kJ	13351,52	kJ
kg	382,32	kg	391,46	kg	307,62	kg

Indeks untuk reaksi kimia

http://www.oc-praktikum.de

Indeks sederhana

Pada kimia organik sintesis, rendemen dan kemurnian merupakan indeks yang umum, yang mengkarakterisasi kualitas dari perubahan kimia yang terjadi. Rendemen /yield atau Y didefinisikan sebagai hasil bagi dari jumlah produk yang dihasilkan dari reaksi (hasil sesungguhnya) dan jumlah produk yang didapat secara teoritis jika reagen pembatas telah diubah sesuai dengan persamaan stoikiometri (hasil teoritis atau hasil stoikiometri), dengan asumsi bahwa kemurnian reagen adalah 100%.

Jika n_k adalah jumlah reagen pembatas sebelum reaksi dan a_P dan a_K adalah koefisien stoikiometri dari produk P dan reagen pembatas R, rendemen dihasilkan dari :

$$Y = n_P.a_R/n_R.a_P$$

Jika n_P adalah jumlah setelah pemurnian, hal ini disebut sebagai rendemen akhir. Secara umum, rendemen yang didefinisikan dari persamaan ini akan dinyatakan dalam persentase (persen rendemen atau persentase rendemen).

Sebelum melaksanakan reaksi yang sesungguhnya, kita dapat menentukan suatu istilah yang disebut atom ekonomi dari persamaan stoikiometrinya. Atom ekonomi menyatakan fraksi mana dari jumlah massa atom di sebelah kiri dari persamaan yang akan muncul pada sisi produk. Dengan melihat definisi ini, hal ini merupakan suatu evaluasi terhadap pendekatan sintesis dari sisi ekonomi. Konsep atom ekonomi diperkenalkan oleh B.M.Trost pada tahun 1995.

Kemurnian produk ditentukan dengan kromatografi lapis tipis (KLT), kromatografi gas (KG) atau kromatografi cair kinerja tinggi (KCKT) dan juga secara umum dinyatakan dalam persen. Namun harus dicatat bahwa setiap sistem analitik mempunyai keterbatasan. Sebagai contoh, pada kromatografi gas hanya senyawa yang menguap pada suhu sampai 250°C tanpa dekomposisi yang dapat dianalisis.

Efisiensi massa suatu reaksi didefinisikan sebagai rasio dari massa produk yang diperoleh dan telah dimurnikan m_P dibagi dengan jumlah massa dari semua senyawa yang digunakan pada campuran reaksi selama percobaan :

 $e_{\rm S} = m_{\rm P}/{\rm jumlah} \ m_i$

Dimana indeks *i* digunakan untuk semua senyawa yang digunakan. Pendingin seperti air pendingin atau es yang tidak bercampur dengan campuran reaksi menurut aturan ini, tidak dipertimbangkan. Perhitungan untuk senyawa semacam ini merupakan suatu pekerjaan yang lebih mendalam dari analisis input.

Efisiensi massa e_S didefinisikan serupa dengan kebalikan dari faktor E (faktor enviromental atau faktor lingkungan) seperti yang diperkenalkan oleh R.Sheldon pada tahun 1994 [2]. Disini digunakan indeks efisiensi sehingga harga yang lebih tinggi menunjukkan adanya perbaikan.

Efisiensi energi $e_{\rm E}$ suatu reaksi didefinisikan sebagai rasio massa produk yang diperoleh dan dimurnikan $m_{\rm P}$ dibagi dengan jumlah energi yang digunakan selama eksperimen:

 $e_{\rm E} = m_{\rm P}/{\rm jumlah}~E_k$

Dimana indek k berlaku untuk semua pengukuran konsumsi energi yang terpisah seperti energi listrik yang digunakan. Pada pengukuran ini, energi yang digunakan untuk menghasilkan es untuk pendingin diperhitungkan. Petunjuk penting untuk pengukuran kontribusi energi semacam ini disampaikan pada artike German NOP

Atom ekonomi, efisiensi massa dan efisiensi energi secara otomatis dihitung untuk percobaan NOP dan dapat dijumpai pada menu "Evaluasi", submenu "Indices" pada halaman tiap percobaan (*link* contoh).

Alat assessment lingkungan untuk sintesis organik (EATOS)

Evaluasi senyawa pada reaksi kimia (termasuk reaksi banyak langkah) dapat dilakukan dengan alat assesment lingkungan untuk sintesis organik (*Environmental Assessment Tool for Organic Syntheses*/EATOS, website EATOS)[3].

Pendekatan ini berdasarkan pada faktor E Sheldons (lihat di atas) yaitu pada jumlah total senyawa yang masuk pada reaksi yang berhubungan dengan produk yang dihasilkan.

Untuk setiap senyawa yang digunakan, faktor load lingkungan Q yaitu sesuatu yang diturunkan dari nilai MAK ($Maximum\ workplace\ consentration\ di\ German$), simbol hazard, phrasa-R (lihat artikel NOP R dan S-satze), nilai LD $_{50}$ dan nilai LC $_{50}$, tetapi juga dapat dipilih dari harga, bergantung pada fokus evaluasi dari pengguna. Indeks Lingkungan (Environmental Index/EI) sebagian besar digunakan untuk evaluasi perbandingan pada langkah dan teknik sintetik yang berbeda dihitung sebagai jumlah dari semua massa senyawa dikalikan dengan faktor Q yang sesuai.

Konsep evaluasi ini diimplementasikan pada perangkat lunak yang tersedia secara bebas dan platform tidak bergantung. Programnya juga menghitung atom ekonomi dan faktor E Sheldon untuk reaksi yang dimasukkan.

Anda dapat menemukan penjelasan singkat dari pendekatan evaluasi EATOS dan juga penerapannya untuk membandingkan percobaan 4010 dengan metoda alternatif pada

artikel NOP "untuk reaksi kimia". Kami juga menawarkan manualnya (.....untuk EATOS) dalam bahasa German.

Pustaka

- [1] B.M Trost. Angew. Chem. Int. ed. Engl, 34:259-281, 1995
- [2] R.Sheldon. Chemtech, 24(3):38-47, 1994
- [3] M.Eissen dan J.O.Metzger, environmental performance metrics for daily use in synthetic chemistry. *Chem. Eur.J.*, 8(16):3580-3585, 2002.